Refined Instrumental Variable Identification of Continuous-Time OE and BJ Models from Irregularly Sampled Data
نویسندگان
چکیده
This paper looks at the problem of system identification from non-uniformly sampled input-output data. It describes how refined instrumental variable estimators can be derived to directly identify the parameters of continuous-time output error and Box-Jenkins transfer function models from irregularly sampled data. Monte Carlo simulation analysis is used to illustrate the properties of the proposed estimation schemes.
منابع مشابه
Transfer function-noise modeling in continuous time using predefined impulse response functions
[1] A method of transfer function-noise (TFN) modeling is presented that operates in continuous time and uses a predefined family of impulse response (IR) functions. The resulting class of models is referred to as predefined IR function in continuous time (PIRFICT). It provides a useful tool for standardized analysis of time series, as it can be calibrated using irregularly spaced data and does...
متن کاملAn optimal instrumental variable method for continuous-time fractional model identification
this paper deals with continuous-time system identification using fractional differentiation models in a noisy output context. The simplified refined instrumental variable for continuous-time systems (srivc) is extended to fractional models. Monte Carlo simulation analysis are used to demonstrate the performance of the proposed optimal instrumental variable scheme.
متن کاملDirect Identification of Continuous-Time LPV Input/Output Models
Controllers in the linear parameter-varying (LPV) framework are commonly designed in continuoustime (CT) requiring accurate and low-order CT models of the system. However, identification of continuous-time LPV models is largely unsolved, representing a gap between the available LPV identification methods and the needs of control synthesis. In order to bridge this gap, direct identification of C...
متن کاملInstrumental variable methods for identifying partial differential equation models
This paper presents instrumental variable methods for identifying partial differential equation models of distributed parameter systems in presence of output measurement noise. Two instrumental variable-based techniques are proposed to handle this continuous-time model identification problem: a basic one using input-only instruments and a more sophisticated refined instrumental variable method....
متن کاملDistillation End Point Estimation in Diesel Fuel Production
Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013